Article Data

  • Views 1802
  • Dowloads 199

Original Research

Open Access

EFFECTS OF EXERCISE TRAINING ON AGING-RELATED NAD+/SIRT1 PATHWAY IN MIDDLE-AGED AND AGED MICE

  • Jinhee Woo1,†
  • Kwangha Hwang1,†
  • Yul-Hyo Lee3
  • Hee-Tae Roh1

1Department of Physical Education, College of Arts and Physical Education, Dong-A University, Busan, Korea

2Laboratory of Exercise Physiology, Department of Physical Education, Graduate School, Dong-A University, Busan, Korea

3Department of Taekwondo, Youngsan University, Yangsan-si, Korea

DOI: 10.31083/jomh.v16i4.281 Vol.16,Issue 4,October 2020 pp.133-140

Published: 01 October 2020

*Corresponding Author(s): Hee-Tae Roh E-mail: dau0409@dau.ac.kr

† These authors contributed equally.

Abstract

Background and objective

The purpose of this study was to investigate the effects of regular exercise training on nicotinamide ade-nine dinucleotide/sirtuin 1 (NAD+/SIRT1) signaling protein levels in skeletal muscles of middle-aged and old-aged mice.

Material and methods

Experimental animals were 40 male C57BL/6 mice out of which 20 were 38-week-old (middle-aged) and the other 20 were 58-week-old (aged). They were divided into four groups: middle-aged control (MC), mid-dle-aged exercise (ME), aged control (AC), and aged exercise (AE) groups (n = 10, each group). ME and AE groups performed exercise training five times weekly for 8 weeks using animal treadmill, after which gastrocnemius muscles were excised and analyzed.

Results

After 8 weeks of intervention, protein levels of AMP-activated protein kinase (AMPK), SIRT1, forkhead box protein 1 (FOXO1), and NAD+ levels were significantly lower in AC group than in MC group (p < 0.05). In addition, AMPK, SIRT1, FOXO1, NAD+, and peroxisome proliferator-activated receptor gamma coact-ivator 1-alpha (PGC-1α) levels were significantly higher in ME and AE groups that exercised for 8 weeks than in MC and AC groups that did not exercise (p < 0.05).

Conclusion

These results suggest that aging and exercise training have opposite effects on the NAD+/SIRT1 pathway in gastrocnemius muscles and that exercise training can be effective in up-regulation of the aging-related NAD+/SIRT1 pathway.

Keywords

aging; AMPK; exercise training; FOXO1; NAD+; PGC-1α; SIRT1

Cite and Share

Jinhee Woo,Kwangha Hwang,Yul-Hyo Lee,Hee-Tae Roh. EFFECTS OF EXERCISE TRAINING ON AGING-RELATED NAD+/SIRT1 PATHWAY IN MIDDLE-AGED AND AGED MICE. Journal of Men's Health. 2020. 16(4);133-140.

References

1. Mouchiroud L, Houtkooper RH, Auwerx J. NAD+ metabolism: A therapeutic target for age-related metabolic disease. Crit Rev Biochem Mol Biol 2013;48(4):397–408. https://doi.org/10.3109/104092 38.2013.789479

2. Fang EF, Lautrup S, Hou Y, et al. NAD+ in aging: Molecular mechanisms and translational implica-tions. Trends Mol Med 2017;23(10):899–916. https://doi.org/10.1016/j.molmed.2017.08.001

3. Imai SI, Guarente L. It takes two to tango: NAD+ and sirtuins in aging/longevity control. NPJ Aging Mech Dis 2016;2:16017. https://doi.org/10.1038/npjamd.2016.17

4. Lin YF, Haynes CM. Metabolism and the UPR(mt). Mol Cell 2016;61(5):677–82. https://doi. org/10.1016/j.molcel.2016.02.004

5. Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci 2007;32(1): 12–19. https://doi.org/10.1016/j.tibs.2006.11.006

6. Morales-Alamo D, Calbet JAL. AMPK signal-ing in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species. Free Radic Biol Med 2016;98:68–77. https://doi.org/10.1016/j. freeradbiomed.2016.01.012

7. Jäger S, Handschin C, St-Pierre J, et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 2007;104(29):12017–22. https://doi.org/10.1073/pnas.0705070104

8. Fulco M, Sartorelli V. Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tis-sues. Cell Cycle 2008;7(23):3669–79. https://doi. org/10.4161/cc.7.23.7164

9. Lee DH. Sirt1 as a new therapeutic target in metabolic and age-related diseases. Chonnam Med J 2010;46(2): 67–73. https://doi.org/10.4068/cmj.2010.46.2.67

10. Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434(7029):113–18. https://doi.org/10.1038/nature03354

11. Anderson R, Prolla T. PGC-1alpha in aging and anti- aging interventions. Biochim Biophys Acta 2009; 1790(10):1059–66. https://doi.org/10.1016/j.bbagen. 2009.04.005

12. Diaz F, Thomas CK, Garcia S, et al. Mice lacking COX10 in skeletal muscle recapitulate the phe-notype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency. Hum Mol Genet 2005;14(18):2737–48. https://doi. org/10.1093/hmg/ddi307

13. Uddin GM, Youngson NA, Sinclair DA, et al. Head to head comparison of short-term treatment with the NAD(+) precursor nicotinamide mononu-cleotide (NMN) and 6 weeks of exercise in obese female mice. Front Pharmacol 2016;7:258. https://doi.org/10.3389/fphar.2016.00258

14. Anderson RM, Bitterman KJ, Wood JG, et al. Nicotinamide and PNC1 govern lifespan exten-sion by calorie restriction in Saccharomyces cer-evisiae. Nature 2003;423(6936):181–5. https://doi. org/10.1038/nature01578

15. Bouzid MA, Filaire E, McCall A, et al. Radical oxy-gen species, exercise and aging: An update. Sports Med 2015;45(9):1245–61. https://doi.org/10.1007/s40279-015-0348-1

16. Nilwik R, Snijders T, Leenders M, et al. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp Gerontol 2013;48(5):492–8. https://doi. org/10.1016/j.exger.2013.02.012

17. Woo J, Shin KO, Park SY, et al. Effects of exer-cise and diet change on cognition function and synaptic plasticity in high fat diet induced obese rats. Lipids Health Dis 2013;12:144. https://doi. org/10.1186/1476-511X-12-144

18. Ko K, Woo J, Bae JY, et al. Exercise training improves intramuscular triglyceride lipolysis sen-sitivity in high-fat diet induced obese mice. Lipids Health Dis 2018;17(1):81. https://doi.org/10.1186/s12944-018-0730-8

19. Woo J, Kang S. Diet change and exercise enhance protein expression of CREB, CRTC 2 and lipoli-tic enzymes in adipocytes of obese mice. Lipids Health Dis 2016;15(1):147. https://doi.org/10.1186/s12944-016-0316-2

20. Imai S, Yoshino J. The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metab-olism and ageing. Diabetes Obes Metab 2013; 15(Suppl 3):26–33. https://doi.org/10.1111/dom.12171

21. Haigis MC, Sinclair DA. Mammalian sirtuins: Biological insights and disease relevance. Annu Rev Pathol 2010;5:253–95. https://doi.org/10.1146/annurev.pathol.4.110807.092250

22. Houtkooper RH, Cantó C, Wanders RJ, et al. The secret life of NAD+: An old metabolite con-trolling new metabolic signaling pathways. Endocr Rev 2010;31(2):194–223. https://doi.org/10.1210/er.2009-0026

23. Katsyuba E, Mottis A, Zietak M, et al. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature 2018;563(7731):354–9. https://doi.org/10.1038/s41586-018-0645-6

24. Ljubicic V, Hood DA. Diminished contrac-tion-induced intracellular signaling towards mitochondrial biogenesis in aged skeletal mus-cle. Aging Cell 2009;8(4):394–404. https://doi. org/10.1111/j.1474-9726.2009.00483.x

25. Kim DH, Park MH, Ha S, et al. Anti-inflammatory action of β-hydroxybutyrate via modulation of PGC-1α and FoxO1, mimicking calorie restric-tion. Aging 2019;11(4):1283–304. https://doi. org/10.18632/aging.101838

26. Winder WW, Thomson DM. Cellular energy sens-ing and signaling by AMP-activated protein kinase. Cell Biochem Biophys 2007;47(3):332–47. https://doi.org/10.1007/s12013-007-0008-7

27. Wang Y, Liang Y, Vanhoutte PM. SIRT1 and AMPK in regulating mammalian senescence: A critical review and a working model. FEBS Lett 2011; 585(7):986–94. https://doi.org/10.1016/j.febslet. 2010.11.047

28. Hardie DG, Hawley SA, Scott JW. AMP-activated protein kinase – Development of the energy sen-sor concept. J Physiol 2006;574(1):7–15. https://doi. org/10.1113/jphysiol.2006.108944

29. Steinberg GR, Carling D. AMP-activated protein kinase: The current landscape for drug develop-ment. Nat Rev Drug Discov 2019;18(7):527–51. https://doi.org/10.1038/s41573-019-0019-2

30. Salminen A, Kaarniranta K. AMP-activated pro-tein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 2012;11(2):230–41. https://doi.org/10.1016/j. arr.2011.12.005

31. Han X, Tai H, Wang X, et al. AMPK activation pro-tects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging Cell 2016;15(3):416–27. https://doi.org/10.1111/acel.12446

32. Cantó C, Jiang LQ, Deshmukh AS, et al. Interdependence of AMPK and SIRT1 for meta-bolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 2010;11(3):213–19. https://doi. org/10.1016/j.cmet.2010.02.006

33. Gross DN, van den Heuvel AP, Birnbaum MJ. The role of FoxO in the regulation of metabo-lism. Oncogene 2008;27(16):2320–36. https://doi. org/10.1038/onc.2008.25

34. Handschin C, Spiegelman BM. Peroxisome pro-liferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabo-lism. Endocr Rev 2006;27(7):728–35. https://doi. org/10.1210/er.2006-0037

35. Thirupathi A, da Silva Pieri BL, Queiroz JAMP, et al. Strength training and aerobic exercise alter mito-chondrial parameters in brown adipose tissue and equally reduce body adiposity in aged rats. J Physiol Biochem 2019;75(1):101–8. https://doi.org/10.1007/s13105-019-00663-x

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,200 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Directory of Open Access Journals (DOAJ) DOAJ is a unique and extensive index of diverse open access journals from around the world, driven by a growing community, committed to ensuring quality content is freely available online for everyone.

SCImago The SCImago Journal & Country Rank is a publicly available portal that includes the journals and country scientific indicators developed from the information contained in the Scopus® database (Elsevier B.V.)

Publication Forum - JUFO (Federation of Finnish Learned Societies) Publication Forum is a classification of publication channels created by the Finnish scientific community to support the quality assessment of academic research.

Scopus: CiteScore 0.7 (2022) Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.

Norwegian Register for Scientific Journals, Series and Publishers Search for publication channels (journals, series and publishers) in the Norwegian Register for Scientific Journals, Series and Publishers to see if they are considered as scientific. (https://kanalregister.hkdir.no/publiseringskanaler/Forside).

Submission Turnaround Time

Conferences

Top