Comparative Pharmacokinetic and Bioavailability Studies of Monotropein, Kaempferol, 3-O-Glucoside and Quercetin 4'-O-Glucoside after Oral and Intravenous Administration of Motilperm in Rats

Main Article Content

Bo Ram Choi
Jaesung Pyo
Mi Seon Yeo
Min-Gul Kim
Yu Seob Shin
Sung Won Lee
Chul Young Kim
Hye Kyung Kim
Jong Kwan Park

Keywords

pharmacokinetic, bioavailability, monotropein, kaempferol 3-O-glucoside, quercetin 4'-O-glucoside

Abstract

Background and Objective
This study has evaluated the pharmacokinetic parameters and bioavailabilities of monotropein, kae-mpferol-3-O-glucoside, and quercetin-4’-O-glucoside after administration of MOTILIPERM in rats. Material and Methods
Following the administration of MOTILIPERM, the plasma concentrations of each compound in rats were simultaneously determined by using liquid chromatography tandem mass spectrometry (LC-MS/MS).


Results
The pharmacokinetic parameters of monotropein in rats were AUCinf 20,020.44±3944.67 and 11,915.53±1190.91 min·ng/mL and Cmax 286.99±38.37 and 56.23±9.02 ng/mL for intravenous and oral administration, respectively. The pharmacokinetic parameters of kaempferol-3-O-glucoside in rats were AUCinf 287.86±126.17 min·ng/mL and not estimated; Cmax 5.80±1.87 and 1.24±0.41 ng/mL for intravenous and oral administration, respectively. The pharmacokinetic parameters of querce-tin-4’-O-glucoside in rats were AUCinf 511.38±248.11 and 481.44±65.72 min·ng/mL; Cmax 10.72±2.70 and 2.83±0.34 ng/mL for intravenous and oral administration, respectively.


Conclusion
The absolute bioavailabilities of monotropein and quercetin-4’-O-glucoside for oral administration were evaluated and calculated as 3.0 and 4.7%, respectively. The absolute bioavailability of kaemp-ferol-3-O-glucoside was not calculated because the elimination rate constant could not be estimated. These results may be applied to the basic data in a further study in order to develop functional foods or herbal medicinal products.

Downloads

Download data is not yet available.
Abstract 78 | PDF Downloads 64 HTML Downloads 9 XML Downloads 0

References

1. Makker K, Agarwal A, Sharma R. Oxidative stress & male infertility. Indian J Med Res 2009;129(4):357–67.
2. Dohle G, Colpi G, Hargreave T, et al. EAU guidelines on male infertility. Eur Urol 2005;48(5):703–11. https://doi.org/10.1016/j.eururo.2005.06.002
3. Bae WJ, Ha U, Choi JB, et al. Protective effect of decursin extracted from Angelica gigas in male infertility via Nrf2/HO-1 signaling pathway. Oxid Med Cell Longev 2016;2016:1–9. https://doi.org/ 10.1155/2016/5901098
4. Clark NA, Will M, Moravek MB, et al. A systematic review of the evidence for complementary and alternative medicine in infertility. Int J Gynaecol Obstet 2013;122(3):202–6. https://doi. org/10.1016/j.ijgo.2013.03.032
5. Zhang Z, Zhang Q, Yang H, et al. Monotropein isolated from the roots of Morinda officinalis increases osteoblastic bone formation and prevents bone loss in ovariectomized mice. Fitoterapia 2016;110:166–72. https://doi.org/10.1016/j.fitote. 2016.03.013
6. Yoshikawa M, Yamaguchi S, Nishisaka H, et al. Chemical constituents of Chinese natural medi-cine, Morindae Radix, the dried roots of Morinda officinalis How: Structures of morindolide and morofficinaloside. Chem Pharm Bull (Tokyo) 1995;43(9):1462–5. https://doi.org/10.1248/cpb. 43.1462
7. Zhu M, Wang C, Wang X, et al. Extraction of polysaccharides from Morinda officinalis by response surface methodology and effect of the polysaccharides on bone-related genes. Carbohydr Polym 2011;85(1):23–8. https://doi.org/10.1016/j. carbpol.2011.01.016
8. Yang Z, Hu J, Zhao M. Isolation and quantitative determination of inulin-type oligosaccharides in roots of Morinda officinalis. Carbohydr Polym 2011;83(4):1997–2004. https://doi.org/10.1016/j. carbpol.2010.11.006
9. Choi J, Lee KT, Choi MY, et al. Antinociceptive, anti-inflammatory effect of Monotropein isolated from the root of Morinda officinalis. Biol Pharm Bull 2005;28(10):1915–8. https://doi.org/10.1248/ bpb.28.1915
10. Shin JS, Yun KJ, Chung KS, et al. Monotropein isolated from the roots of Morinda officinalis ameliorates proinflammatory mediators in RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis via NF-kappaB inactivation. Food Chem Toxicol 2013;53:263–71. https:// doi.org/10.1016/j.fct.2012.12.013
11. Yen FL, Wu TH, Lin LT, et al. Concordance between antioxidant activities and flavonol con-tents in different extracts and fractions of Cuscuta chinensis. Food Chem 2008;108(2):455–62. https:// doi.org/10.1016/j.foodchem.2007.10.077
12. Umehara K, Nemoto K, Ohkubo T, et al. Isolation of a new 15-membered macrocyclic glycolipid lactone, Cuscutic Resinoside a from the  seeds of Cuscuta chinensis: A stimulator of breastcancer cell proliferation. Planta Med  2004;70(4):299–304. https://doi.org/10.1055/s-2004-818939
13. Bao X, Wang Z, Fang J, et al. Structural features of an immunostimulating and antioxidant acidic polysaccharide from the seeds of Cuscuta chinensis. Planta Med 2002;68(3):237–43. https://doi. org/10.1055/s-2002-23133
14. Wang Z, Fang JN, Ge DL, et al. Chemical characterization and immunological activities of an acidic polysaccharide isolated from the seeds of Cuscuta chinensis Lam. Acta Pharmacol Sin 2000;21(12):1136–40.
15. Donnapee S, Li J, Yang X, et al. Cuscuta chinensis Lam.: A systematic review on ethnopharmacology, phytochemistry and pharmacology of an  important traditional herbal medicine. J Ethnopharmacol 2014;157:292–308. https://doi. org/10.1016/j.jep.2014.09.032
16. Yen FL, Wu TH, Lin LT, et al. Nanoparticles for-mulation of Cuscuta chinensis prevents acetamin-ophen-induced hepatotoxicity in rats. Food Chem  Toxicol2008;46(5):1771–7. https://doi.org/ 10.1016/j.fct.2008.01.021
17. Marotti M, Piccaglia R. Characterization of flavonoids in different cultivars of onion (Allium cepa L.). J Food Sci 2002;67(3): 1229–32. https://doi.org/10.1111/j.1365-2621. 2002.tb09482.x
18. Wiczkowski Wa, Nèmeth K, Buciñski A, et al. Bioavailability of quercetin from flesh scales and dry skin of onion in rats. Pol J Food Nutr Sci 2003;12(53):95–9.
19. Olsson ME, Gustavsson KE, Vagen IM. Quercetin and isorhamnetin in sweet and red cultivars of onion (Allium cepa L.) at harvest, after field cur-ing, heat treatment, and storage. J Agric Food Chem 2010;58(4):2323–30. https://doi.org/10. 1021/jf9027014
20. Slimestad R, Fossen T, Vagen IM. Onions: A source of unique dietary flavonoids. J Agric Food Chem 2007;55(25):10067–80. https://doi.org/10. 1021/jf0712503
21. Singh BN, Singh BR, Singh RL, et al. Polyphenolics from various extracts/fractions of red onion (Allium cepa) peel with potent antioxidant and  antimutagenic activities. Food Chem Toxicol 2009;47(6):1161–7. https://doi.org/10.1016/ j.fct.2009.02.004
22. Soni KK, Zhang LT, You JH, et al. The effects of MOTILIPERM on cisplatin induced testicular toxicity in Sprague-Dawley rats. Cancer Cell  Int  2015;15:121. https://doi.org/10.1186/ s12935-015-0274-1
23. Soni KK, Zhang LT, Choi BR, et al. Protective effect of MOTILIPERM in varicocele-induced oxidative injury in rat testis by activating phosphorylated inositol requiring kinase 1α (p-IRE1α) and phosphorylated c-Jun N-terminal kinase  (p-JNK) pathways. Pharm Biol 2018;56(1):94–103. https://doi.org/10.1080/1388 0209.2017.1421672
24. Soni KK, Shin YS, Choi BR, et al. Protective effect of DA-9401 in finasteride-induced apopto-sis in rat testis: Inositol requiring kinase 1 and c-Jun N-terminal kinase pathway. Drug Des Devel Ther 2017;11:2969–79.
25.Tsuruma T, Sahara H, Takenouchi M, et al. Synthetic sulfonolipids deduced from sulfonoqui-novosyl diacylglycerols of sea urchin reduces hepatic ischemia-reperfusion injury in rats. Transplant Proc 2004;36(7):1965–9.
26.Suyama Y, Handa O, Naito Y, et al. Mucus reduction promotes acetyl salicylic acid-induced small intestinal mucosal injury in rats. Biochem Biophys Res Commun 2018;498(1):228–33. https://doi. org/10.1016/j.bbrc.2018.02.202
27. Mekjaruskul C, Jay M, Sripanidkulchai B, et al. Pharmacokinetics, bioavailability, tissue distribution, excretion, and metabolite identification of methoxyflavones in Kaempferia parviflora extract in rats. Drug Metab Dispos 2012;40(12): 2342–53.
28. Li X, Wang G, Sun J, et al. Pharmacokinetic and absolute bioavailability study of total panax notoginsenoside, a typical multiple constituent tradi-tional chinese medicine (TCM) in rats. Biol Pharm Bull 2007;30(5):847–51.
29. Liu J, Zou S, Liu W, et al. An established HPLC-MS/MS method for evaluation of the influence of salt processing on pharmacokinetics of six compounds in cuscutae semen. Molecules 2019;24(13):2502.
30. Li C, Dong J, Tian J, et al. LC/MS/MS determina-tion and pharmacokinetic study of iridoid glycosides monotropein and deacetylasperulosidic acid  isomers in rat plasma after oral administration of Morinda officinalis extract. Biomed Chromatogr 2016;30(2):163–8. https://doi.org/10. 1002/bmc.3532
31. Zhou Q, Yan H, Li R, et al. Quantitative determination of monotropein in rat plasma and tissue by LC–MS/MS and its application to pharmacoki-netic and tissue distribution studies. Rev Bras Farmacogn 2018;28(4):451–6.
32. Li L, Brunner I, Han AR, et al. Pharmacokinetics of α-mangostin in rats after intravenous and oral application. Mol Nutr Food Res 2011;55(S1): S67–74. https://doi.org/10.1002/mnfr.201000511
33. Wang F, Cao J, Hao J, et al. Pharmacokinetics, bioavailability and tissue distribution of geniposide following intravenous and peroral adminis-tration to rats. Biopharm Drug Dispos 2014; 35(2):97–103.
34. Lee HW, Kil KJ, Lee MS. Ginseng for improving semen quality parameters: A systematic review. World J Mens Health 2020;38:1–10. https://doi. org/10.5534/wjmh.190125
35. Yoon YE, Kim TY, Shin TE, et al. Validation of  SwimCount™, a novel home-based device that  detects progressively motile spermatozoa: Correlation with world health organization 5th  semen analysis. World J Mens Health 2020;38: 191–7. https://doi.org/10.5534/wjmh. 180095
36. Park HJ, Koo YK, Park MJ, et al. Restoration of spermatogenesis using a new combined herbal formula of epimedium koreanum nakai and angelica gigas nakai in an luteinizing hormone-releasing hormone agonist-induced rat model of male infertility. World J Mens Health 2017;35: 170–7. https://doi.org/10.5534/wjmh.17031