Article Data

  • Views 1434
  • Dowloads 154

Original Research

Open Access

EFFECTS OF LONG-TERM AND SHORT-TERM CARDIAC REHABILITATION PROGRAMS ON CARDIOVASCULAR RISK FACTORS AND PHYSICAL FITNESS AFTER PERCUTANEOUS CORONARY INTERVENTION

  • Duk Han Ko1
  • Kyujin Lee2
  • Jinwook Chung1

1Department of Sports Science Convergence, Dongguk University, Seoul, Republic of Korea

2Department of Physical Education, Institution of Sports Science, Seoul National University, Seoul, Republic of Korea

DOI: 10.15586/jomh.v16i3.253 Vol.16,Issue 3,July 2020 pp.29-37

Published: 16 July 2020

*Corresponding Author(s): Kyujin Lee E-mail: my993286@snu.ac.kr
*Corresponding Author(s): Jinwook Chung E-mail: cjw826@dongguk.edu

Abstract

Background

Cardiac rehabilitation programs reduce the likelihood of relapse and cardiac arrest in patients with cor-onary artery disease. The goal of this study was to compare and analyze changes in cardiovascular risk factors and physical fitness in patients who participated in short-term (ST) and long-term (LT) cardiac rehabilitation programs following coronary artery percutaneous coronary intervention (PCI).

Methods

This study included 193 men aged ≥45 years who received PCI for coronary artery occlusive disease. The participants were divided into ST program participants (3 months, 108 participants; ST group) and LT program participants (12 months, 85 participants; LT group). Blood lipids analysis, body composition, and physical fitness tests were performed to assess cardiovascular risk factors and physical fitness. Paired t-test and two-way ANOVA with repeated measures were used to investigate the effect of the intervention.

Results

Both groups had significant improvements after cardiac rehabilitation in body fat, high-density lipoprotein cholesterol, exercise duration, heart rate (HR) at rest, double product peak, VO2 peak, 6-min walking, and sit-to-stand, compared to baseline. The LT group also had significant improvements after cardiac rehabili-tation in waist circumference (WC), total cholesterol (TC), triglyceride (TG), and HR peak. LT group had significantly improved effect than ST group in WC, TC, TG, exercise time, HR peak, and 6-min walking.

Conclusion

The cardiac rehabilitation program led to improved cardiovascular risk factors and physical fitness, and the LT program was more effective than the ST program.

Keywords

cardiac rehabilitation; risk factor; fitness; percutaneous coronary intervention

Cite and Share

Duk Han Ko,Kyujin Lee,Jinwook Chung. EFFECTS OF LONG-TERM AND SHORT-TERM CARDIAC REHABILITATION PROGRAMS ON CARDIOVASCULAR RISK FACTORS AND PHYSICAL FITNESS AFTER PERCUTANEOUS CORONARY INTERVENTION. Journal of Men's Health. 2020. 16(3);29-37.

References

1. Abubakar I, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–71. http://dx.doi.org/10.1016/S0140-6736(14)61682-2

2. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–43. http://dx.doi.org/10.1161/hc0902.104353

3. Capodanno D, Stone GW, Morice MC, et al. Percutaneous coronary intervention versus coro-nary artery bypass graft surgery in left main coro-nary artery disease: A meta-analysis of randomized clinical data. J Am Coll Cardiol. 2011;58:1426–32. http://dx.doi.org/10.1016/j.jacc.2011.07.005

4. Piepoli MF, Corra U, Benzer W, et al. Secondary prevention through cardiac rehabilitation: From knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehab. 2010;17:1–17. http://dx.doi.org/10.1097/HJR.0b013e3283313592

5. Young Taeck Oh, Jaehoon Oh, Seung Min Park, et al. Vasoactive-inotropic score as a predictor of in-hospital mortality in out-of-hospital cardiac arrest. JOMH. 2019. 15;40-44. https://

dx. doi.org/10.22514/SV152.092019.6

6. DeBusk RF, Haskell WL, Miller NH, et al. Medically directed at-home rehabilitation soon after clinically uncomplicated acute myocardial infarction: A new model for patient care. Am J Cardiol. 1985;55:251–

7. http://dx.doi.org/10.1016/0002-9149(85)90355-8

7. Kachur S, Chongthammakun V, Lavie CJ, et al. Impact of cardiac rehabilitation and exercise training programs in coronary heart disease. Prog Cardiovasc Dis. 2017;60:103–14. http://dx.doi. org/10.1016/j.pcad.2017.07.002

8. Palasuwan A, Margaritis I, Soogarun S, et al. Dietary intakes and antioxidant status in mind-body exercising pre - and postmenopausal women. J Nutr Health Aging. 2011;15:577-84. http://dx.doi.org/10.1007/

s12603-011-0060-2

9. Worcester MU, Murphy BM, Mee VK, et al. Cardiac rehabilitation programmes: Predictors of non- attendance and drop-out. Eur J Cardiovasc Prev Rehab. 2004;11:328–35. http://dx.doi.org/10.1097/01. hjr.0000137083.20844.54

10. ACSM (American College Sports Medicine). ACSM’s guidelines for exercise testing and pre-scription. 10th ed. Philadephia, PA: Lippincott Williams & Wilkins; 2017.

11. Gordon NF, Gulanick M, Costa F, et al. Physical activity and exercise recommendations for stroke survivors: An American Heart Association sci-entific statement from the Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention; the Council on Cardiovascular Nursing; the Council on Nutrition, Physical Activity, and Metabolism; and the Stroke Council. Circulation. 2004;109:2031–41. http://dx. doi.org/10.1161/01.CIR.0000126280.65777.A4

12. Enright PL, McBurnie MA, Bittner V, et al. The

6- min walk test: A quick measure of functional sta-tus in elderly adults. Chest. 2003;123:387–98. http://dx.doi.org/10.1378/chest.123.2.387

13. Maurissen JP, Marable BR, Andrus AK, et al. Factors affecting grip strength testing. Neurotoxicol Teratol. 2003;25:543–53. http://dx.doi.org/10.1016/S0892-0362(03)00073-4

14. Rikli RE, Jones CJ. Senior fitness test manual. Champaign, IL: Human Kinetics; 2013.

15. Goel K, Lennon RJ, Tilbury RT, et al. Impact of cardiac rehabilitation on mortality and cardiovascu-lar events after percutaneous coronary intervention in the community. Circulation. 2011;123:2344–52. http://dx.doi.org/10.1161/CIRCULATIONAHA. 110.983536

16. Yohannes AM, Doherty P, Bundy C, et al. The long-term benefits of cardiac rehabilitation on depression, anxiety, physical activity and quality of life. J Clin Nurs. 2010;19:2806–13. http://dx.doi. org/10.1111/j.1365-2702.2010.03313.x

17. Oldridge N. Exercise-based cardiac rehabilitation in patients with coronary heart disease: Meta-analysis outcomes revisited. Future Cardiol. 2012;8:729–51. http://dx.doi.org/10.2217/fca.12.34

18. Gordon B, Chen S, Durstine JL. The effects of exercise training on the traditional lipid profile and beyond. Curr Sports Med Rep. 2014;13:253–9. http://dx.doi.org/10.1249/JSR.0000000000000073

19. Lavie CJ, Milani RV. Cardiac rehabilitation and exercise training in secondary coronary heart dis-ease prevention. Prog Cardiovasc Dis. 2011;53:397–

403. http://dx.doi.org/10.1016/j.pcad.2011.02.008

20. Scranton R, Sesso HD, Stampfer MJ, et al. Predictors of 14-year changes in the total choles-terol to high-density lipoprotein cholesterol ratio in men. Am Heart J. 2004;147:1033–8. http://dx.doi. org/10.1016/j.ahj.2003.11.018

21. Brubaker PH, Warner JG Jr, Rejeski WJ, et al. Comparison of standard-and extended-length par-ticipation in cardiac rehabilitation on body compo-sition, functional capacity, and blood lipids. Am J Cardiol. 1996;78:769–73. http://dx.doi.org/10.1016/S0002-9149(96)00418-3

22. Morrin L, Black S, Reid R. Impact of duration in a cardiac rehabilitation program on coronary risk profile and health-related quality of life outcomes. J Cardiopulm Rehabil Prev. 2000;20:115–21. http://

dx. doi.org/10.1097/00008483-200003000-00005

23. McGrady A, McGinnis R, Badenhop D, et al. Effects of depression and anxiety on adherence to cardiac rehabilitation. J Cardiopulm Rehabil Prev. 2009;29:358–64. http://dx.doi.org/10.1097/HCR.0b013e3181be7a8f

24. Al-Daghri NM, Alkharfy KM, Al-Attas OS, et al. Gender-dependent associations between socioeconomic status and metabolic syndrome: a cross-sectional study in the adult Saudi population. BMC Cardiovasc Disord. 2014;14:51. http://doi.org/ 10.1186/1471-2261-14-51

25. Schutte R, Thijs L, Asayama K, et al. Double prod-uct reflects the predictive power of systolic pressure in the general population: Evidence from 9,937 par-ticipants. Am J Hypertens. 2013;26:665–72. http://dx.doi.org/10.1093/ajh/hps119

26. Jolly MA, Brennan DM, Cho L. Impact of exercise on heart rate recovery. Circulation. 2011;124:1520–6. http://dx.doi.org/10.1161/CIRCULATIONAHA.110.005009

27. Pérez IP, Zapata MÁ, Cervantes CE, et al. Cardiac rehabilitation programs improve metabolic parame-ters in patients with the metabolic syndrome and coro-nary heart disease. J Clin Hypertens. 2010;12:374–9. http://dx.doi.org/10.1111/j.1751-7176.2009.00259.x

28. Kemi OJ, Haram PM, Loennechen JP, et al. Moderate vs. high exercise intensity: Differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res. 2005;67:161–

72. http://dx.doi.org/10.1016/j.cardiores.2005.03.010

29. Wessel TR, Arant CB, Olson MB, et al. Relationship of physical fitness vs body mass index with coro-nary artery disease and cardiovascular events in women. JAMA. 2004;292:1179–87. http://dx.doi. org/10.1001/jama.292.10.1179

30. Shin Y-O, Bae J-S, Lee J-B, et al. Effect of cardiac rehabilitation and statin treatment on anti-HSP antibody titers in patients with coronary artery dis-ease after percutaneous coronary intervention. Int Heart J. 2006;47:671–82. http://dx.doi.org/10.1536/ihj.47.671

31. Boulay P, Prud’Homme D. Risk factor management after short-term versus long-term cardiac rehabili-tation program. Coronary Health Care. 2001;5:133–

140. http://dx.doi.org/10.1054/chec.2001.0127

32. Kim YH, So W-Y. A low arm and leg mus-cle mass to total body weight ratio is associated with an increased prevalence of metabolic syn-drome: The Korea National Health and Nutrition Examination Survey 2010–2011. Technol Health Care. 2016;24:655–63. http://dx.doi.org/10.3233/THC-161162

33. Ho S, Chen Y, Woo J, et al. Association between simple anthropometric indices and cardiovascular risk factors. Int J Obes. 2001;25:1689–97. http://dx. doi.org/10.1038/sj.ijo.0801784 

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,200 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Directory of Open Access Journals (DOAJ) DOAJ is a unique and extensive index of diverse open access journals from around the world, driven by a growing community, committed to ensuring quality content is freely available online for everyone.

SCImago The SCImago Journal & Country Rank is a publicly available portal that includes the journals and country scientific indicators developed from the information contained in the Scopus® database (Elsevier B.V.)

Publication Forum - JUFO (Federation of Finnish Learned Societies) Publication Forum is a classification of publication channels created by the Finnish scientific community to support the quality assessment of academic research.

Scopus: CiteScore 0.9 (2023) Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.

Norwegian Register for Scientific Journals, Series and Publishers Search for publication channels (journals, series and publishers) in the Norwegian Register for Scientific Journals, Series and Publishers to see if they are considered as scientific. (https://kanalregister.hkdir.no/publiseringskanaler/Forside).

Submission Turnaround Time

Conferences

Top